Status of Layer 0 and Analog Cable for D0 run2b silicon tracker

Kazu Hanagaki / Fermilab

- Analog cable design.
- Prototype analog cable.
- Proximity of analog cable to grounding/shielding.
- Grounding/Shielding studies with L0 prototype.
- Summary

Cable design

Cable design (cont'd)

Cable design (cont'd)

• A "jog" at sensor side, where traces are shifted vertically by ~0.6 mm over a length of a few mm.

Prototype cables by Dyconex (3rd and 4th prototype)

- all cables are Ni-Au plated
 (~1.2μm) over the full length,
 solder mask only on HV+GND
 traces
- visual inspection on cables:
 - look for not gold-plated (copper) pads.

3rd prototype

# open traces	0	1	2	>2
#cables	22	13	4	0

- 129 traces → one open is allowed.
- trace width on cables:
 9-12μm for 3rd and ~19μm for 4th prototypes.

4th prototype

No single opens out of 40 cables.

Capacitance (one to neighbors) ~ 0.35pF/cm measured by LCR meter.

Noise due to capacitance

capacitive load by cable (0.8ADC~600e)

SVX4 ENC: const+41C \rightarrow 600e indicates C = 15pF

Proximity to grounding plane

• Either additional shielding or Carbon Fiber structure works as grounding plane.

• Proximity to the grounding plane is an issue.

Proximity to the grounding/shielding

- Only the difference is the weight on top of the cables.
 - → Proximity to the shielding material.

Proximity to the Shielding (cont'd)

A:nothing B:	top	bottom
75µm Kapton (no weight)	2.8	2.8
75μm Kapton + 400μm polypropylene mesh	2.8	2.9
75μm Kapton + 200μm polypropylene mesh	3.2	3.3
75µm Kapton	4.3	5.3

• The study is still on going...

Choice of spacer

- Dyconex has produced three different meshes with kapton sheet.
 - hole radius: 60 μm
 - hole-distance: 190, 210 and 230 μm
 - corresponding to $\varepsilon_r \sim 1.95$, 2.2 and 2.45

Polypropylene mesh sheet

Grounding Studies

Signal ground

L0 prototype module

Effect of Grounding

Equivalent (?) circuit (cont'd)

Least impedance = least inductance for high frequency (not resistance).

After putting extra grounding plane

Note! Still the hybrid grounding is not perfect in terms of getting low inductance... but the effect of the extra ground plane is clearly seen.

Importance of low inductance connection

Low inductance connection (cont'd)

Reducing the inductance

- Having lower inductance connection to GND seems crucial.
- L ~ (wire) length/radius: $M=\mu l/2\pi [log(2l/r)-1]$
- $L = \Psi/I$
- Ψ ~ area of the closed circuit

better

- People know these rules well, but sometimes forget to apply.
- But these rules are always critical for any grounding connections, both locally and generally.

How do we achieve????????????

• Sensor grounding.

- The sensor and hybrid need to be connected through rigid ground plane. This should work also as a shielding.
 - **\(\)** extension of kapton flex with copper mesh embedded.
- Hybrid side: proposal using the similar technique, but not yet decided.
- Need to decide; multi point ground vs single point ground.

Summary

- The analog cable design almost fixed.
- Capacitance ~ 0.35pF/cm.
- Proximity of analog cable to grounding/shielding material has an impact on the noise performance. may need lower dielectric spacer and/or distance.
- Analog cable is just a part of the solution to make a low noise detector.
 The ground return is critically important.
- Connection of any shields to ground etc. is also important (low inductance).
- Any solution needs to be a system solution.

...Backup Slides

Cable design (noise due to capacitance load)

Total noise estimates VS total capacitance $(C_{si} + C_{cable})$

S/N=10 after 15fb⁻¹ \rightarrow C_{cable} < 23pF for 43.5cm long cable \rightarrow C_{cable} < 0.53pF/cm

Cable design (capacitance calculations)

16 μ m wide trace with ~100 μ m pitch satisfies the requirement of <0.53pF/cm

- 50 μ m thick Kapton substrate ($\epsilon_r = 3.5$).
- Copper trace with 8 μm height.
 - \rightarrow Calculation agrees with measurement with 10% for the 1st prototype.

Capacitance calculations

Trace pitch = 100 μ m Trace size = 8 x 16 μ m C = 0.328 pF/cm

200 μm 50 μm contributions from:

two neighbors = 0.208 pF/cm two top neighbors = 0.014 pF/cm two bottom neighbors = 0.017 pF/cm

Dielectric constants: 3.5 for kapton substrate, 1.0 (air) for the space between the cables.

kapton's $\varepsilon_{\rm r}$ fixed to 3.5

Radiation length

Min (2 cables)		Max (12 cables)		
100μm Kapton	0.04%	600μm Kapton	0.21%	
3μm Cu (a)	0.02%	16µm Cu (a)	0.11%	
300µm (b) polypropylene	0.07%	1300µm (b) polypropylene	0.32%	
20μm Al (c)	0.02%	20μm Al (c)	0.02%	
Total	0.15%	Total	0.66%	

- (a) 16% of area occupancy is taken account.
- (b) 50% of volume occupancy assumed. May be possible to reduce.
- (c) heavy duty aluminum foil was measured to 20µm thick.

Metrology Results

- measured only two cables of S1-A type:
 - hole diameter: 1.52±0.02 mm OK!
 - hole-hole distances:
 - 413.67±0.05 mm -> OK?
 - $27.27 \pm 0.02 \text{ mm} \rightarrow \text{OK}$?
 - full length: 463.718 mm and 463.644 mm (should be 463.650 mm)
 - trace width: 19 μ m, RMS < 0.5 μ m
 - however 1st and 129th trace have thickness of ~28 μm. Effect understood by company
 - specified 15 μ m, but could also live with 19 μ m
 - pitch: 91.5 μm, RMS<0.6 μm
 - HV & GND trace width: 0.1 mm
 - pad size: 45 x 120 μm

Misc. info.

- Information to solder mask on HV and GND trace:
 - WPS 80 from Multiline International
 - Photo-imagable covercoat
 - dielectric constant: ~3.5 @ 1 MHz
 - dielectric strength: 3kV/mil
 - actual thickness ~10 μm
 - tested HV trace up to 500V @ 1-2 mA
- glue for lamination:
 - Pyralux LF adhesive sheets from Dupont
 - acrylic adhesive